Modbus 変換器 Modbus Converter 取扱説明書

DT-MDBO5s(SW2-7/8 = OFF/ON)

「Modbus 変換器」(DT-MDB05s)と、「アナログシリアルコンバータ」(DT-ASC04i)はディップスイッチで切り換えて、どちらの機種としてもご使用いただけます。

パネル表記は「DT-ASC04i」ですが、ディップスイッチ SW2-7を OFF に、SW2-8を ON に 設定していただくと「DT-MDB05s」として動作いたします。

この取扱説明書は、「Modbus 変換器」(DT-MDB05s)として動作させる場合を述べます。 「アナログシリアルコンバータ」(DT-ASC04i)については、

・「アナログシリアルコンバータ 取扱説明書< X519004>」 をご覧ください。

株式会社データ・テクノ

京都市下京区西七条東御前田町48番地 URL: https://www.datatecno.co.jp/ 〒600-8898 TEL:(075)313-3275 FAX:(075)314-0576

- ・本取扱説明書の内容は、改良のため予告なく変更することがあります。
- ・最新の情報は、弊社ホームページでご確認ください。

目次

Ι		概要	3
1	1.	概略手順	3
2	2.	外観	4
3	3.	表示画面	5
II		入力のサンプリングと信号処理	5
1	1.	サンプリング周期	5
2	2.	リセットモード	6
3	3.	演算区間と演算値・最終値	6
4	4.	平均値の最大区間	7
III		設定切り換え	7
1	1.	ディップスイッチ切り換え	7
2	2.	通信コマンドによる切り換え	9
3	3.	プログラムアップデート	9
IV		接続	. 10
1	1.	アナログ入力	. 10
2	2.	RS-232C通信	. 11
3	3.	電源	. 11
4	4.	RS-485	. 12
V		仕様・外観	. 13
1	1.	仕様表	. 13
2	2.	外観寸法図	. 15
VI		注意事項・その他	. 15
1	1.	保証規定	. 15
2	2.	センドバック修理	. 16
3	3.	修理見積	. 16
4	4.	免責事項	. 16

┃ 概要

Modbus変換器は、アナログ電圧、または電流入力を、Modbus通信に変換して送信するアダプターです。

アナログ入力をModbus通信で取得することが出来ます。

- ・1台で、4チャンネルの入力ができ、チャンネルごとに電圧、電流を選択できます。
- ・チャンネル間絶縁が施されていますので、幅広い機器への接続が可能となります。
- ・複数台を接続しチャンネルを拡張することが出来ます。
- ・他のModbus機器と一緒にデータ収集することが出来ます。
- ・DC領域のアナログ入力を扱います。

1. 概略手順

アナログ入力を接続してください。

Modbus通信線を接続してください。

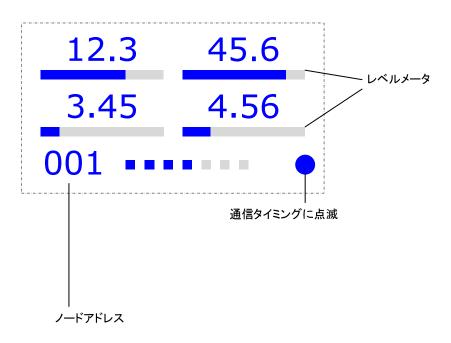
電源は電源コネクタのほか、通信ケーブルを通じて供給を受けることができます。

Modbus変換器に電源スイッチはなく、電源の供給を受けるとすぐさま動作を開始します。

Modbus変換器の機能は、ディップスイッチやModbusレジスタで切り換えることが出来ます。


それぞれの詳細については、あとに続く章をご覧ください。

2. 外観


【裏面】

【底面】

3. 表示画面

※実際の表示色は紙面と異なります。

入力のサンプリングと信号処理

アナログ入力はサンプリング周期でサンプリングされます。

サンプリングされたデータは、平均値・最大・最小・絶対値最大・絶対値最小の信号処理が 行われます。とくに演算処理されない値は、瞬時値です。

演算処理は演算区間に基づいて行なわれます。

1. サンプリング周期

サンプリング周期は、通常モード/高速モードが選択できます。

- ・通常モード: サンプリング周期: 1〔秒〕。 全チャンネル同時サンプリングではなく、250[ミリ秒]ごとに各チャンネルがスキャンされ、 4回のスキャンで全チャンネルデータが揃います。
- ・高速モード: サンプリング周期: 25[ミリ秒]。 全チャンネル同時サンプリングではなく、6.25[ミリ秒]ごとに各チャンネルがスキャン され、4回のスキャンで全チャンネルデータが揃います。

2. リセットモード

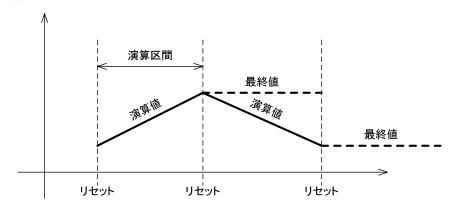
平均値、最大値、最小値、絶対値最大、絶対値最小には演算区間が存在します。 演算区間をリセットする(つぎへ進める)ために、リセットモード(信号処理モード。保持レジス タ:40023~40026、または 45023~45026) が選べます。

リセットモードはチャンネルごとに選べます。

リセットモード	動作
インターバル	INTERVAL(リセット周期)で、当該チャンネルの全項目がリセットされま
	す。
読み出し	当該項目が読み出されたとき、当該項目、当該チャンネルのみがリセットリ
	セットされます。
フリー	明示的にコイル(8)でリセットされない限り、リセットされません。

※コイル(8)によるリセットは、どのモードでも行なわれます

INTERVAL (リセット周期)の設定は保持レジスタ(40001,02、または 45001,02)で行な います。


3. 演算区間と演算値・最終値

平均値、最大値、最小値、絶対値最大、絶対値最小は、それぞれの演算値と、それぞれの最終 値が、読み出せます。

演算値は、その演算区間の最初から、読み出したときまでの、それぞれの値が示されます。 最終値は、直前の期間の最終の演算値が読み出せます。

リセットが発生した時点の瞬時値は、直前の演算区間にも、直後の演算区間にも含まれます。 読み出しリセット時に読み出される値は、リセット直前の値です。

(概念図)

4. 平均値の最大区間

平均は最大区間までが計算可能です。最大区間を越えると平均値はゼロが読み出せま す。

最大区間

通常モード: 20日 高速モード: 12 時間

設定切り換え III

Modbus機器は、ディップスイッチやModbusレジスタで、一部の機能をつぎのように、切り 換えることが出来ます。

換えることが山木より。		
項目	ディップスイッチ	レジスタ
(基本機能)		
入力切り換え(電流/電圧)	0	
リセット周期	Δ	0
サンプリングモード(通常/高速)		0
(通信)		
ビットレート	Δ	0
(RS-485通信)		
スレーブ間通信ターミネータ	0	
スレーブ間通信プルアップダウン	0	
ノードアドレス	\triangle	0
(信号処理)		
スケーリングのためのオフセット		0
スケーリングのためのゲイン		0
信号処理モード(瞬時値/平均値/最大値など)		0
【凡例】	_	
○:設定可能。:設定出来ない。 △:一部可能。		

1. ディップスイッチ切り換え

(SW1)

SW1-1	CH1入力切り換え
OFF	電圧(-10~10V)
ON	電流(4-20mA)

SW1-2	CH2入力切り換え
OFF	電圧(-10~10V)
ON	電流 (4-20mA)

SW1-3	CH3入力切り換え
OFF	電圧(-10~10V)
ON	電流(4-20mA)

SW1-4	CH4入力切り換え
OFF	電圧 (-10~10V)
ON	電流(4-20mA)

SW1-5	SW1-6	リセット周期
OFF	OFF	1秒
OFF	ON	10 秒
ON	OFF	1分
ON	ON	他励・コンフィギュレーション設定に従う。

SW1-7	SW1-8	ビットレート(RS-485、RS-232C 共)
OFF	OFF	9,600 bps
OFF	ON	115,200 bps
ON	OFF	230,400 bps
ON	ON	コンフィギュレーション設定に従う。

(SW2)

SW2-1	ターミネータ(RS-485 ス間通信)
OFF	なし
ON	あり

SW2-2	プルアップ(RS-485 スレーブ間通信)
OFF	なし
ON	あり

SW2-3	プルダウン(RS-485 スレーブ間通信)
OFF	なし
ON	あり

SW2-4	(予備)
OFF	
ON	

SW2-5	SW2-6	ノードアドレス
OFF	OFF	0 (すべてに応答)
OFF	ON	1
ON	OFF	2
ON	ON	コンフィギュレーション設定に従う。

SW2-7	SW2-8	モード
OFF	OFF	アナログシリアルコンバータ(DT-ASC04i)として機能
OFF	ON	Modbus 変換機(DT-MDB05s)として機能
ON	OFF	予約
ON	ON	プログラムアップデート

【プログラムバージョン v0.10 以降に適応】

2. 通信コマンドによる切り換え

Modbus変換器は、Modbus通信によってレジスタを書き換えることによって、機能の一部 を切り換えることが出来ます。

Modbusレジスタでは設定変更のほか、一部動作の制御も行なえます。

Windows パソコンで、Modbus変換器の簡単な動作確認と、設定変更ができるホストプロ グラムを、当社ホームページで提供しております。

詳細は別資料「AnalogScopeModbus版の使い方(AnalogScopeModbus-users_X5xxy yy)」をご参照ください。

Modbusレジスタの仕様は、当社ホームページで公開されております。 お客様のアプリケーションからでも、制御、設定変更が可能です。 詳細は別資料「Modbusデータマップ(modbus_datamap_X5xxyyy)」をご参照ください。

3. プログラムアップデート

本機はお客様において内部プログラムをアップデートしていただけます。 内部プログラムはパソコンとシリアル通信を接続し、専用ソフトを起動して行ないます。 内部プログラムアップデートについて詳しくは〔資料準備中〕をご参照ください。

【プログラムバージョン v0.10 以降に適応】

接続 IV

1. アナログ入力

電圧の場合は、V-G間に、電流の場合は、A-G間に入力を接続してください。 電圧、電流の違いはディップスイッチ設定と合わせてください。

設定と入力が一致していないと、正しい値が取得できません。故障の原因にはなりません。 端子台部分は取り外すことが出来ます。

	端子台(3P)	
型番	691361300003	400
メーカ	Wurth Electronics	3

2. RS-232C通信

パソコンなどと接続してください。

パソコンと接続する場合は、ストレートケーブルをご使用ください。

9番ピンから、電源供給を受けることが出来ます。

DSub9ピン、メスコネクタです。コネクタ固定ネジは、2.6 ¢ インチネジです。

ピン番号	名称	内容	信号の方向
1	NC	未接続	
2	TXD	本機からの送信データ	出力
3	RXD	本機への受信データ	入力
4	DSR	本機内部で、6番ピンと接続	
5	GND	グラウンド	
6	DTR	本機内部で、4番ピンと接続	
7	CTS	未使用	入力
8	RTS	通常はハイレベル。	出力
9		電源受給	電源入力

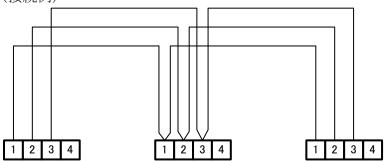
3. 電源

電源は、電源コネクタ、またはDSub9ピンコネクタの9番ピンから、またはRS-485コネクタ の、電源端子から受けることが出来ます。

それぞれに電源が供給された場合は、電圧差によって何れか(ざっくりとは電圧の高い方) から供給を受けます。

電源は安定化されたDC8V~12V、電流容量300mA以上を供給してください。 スレーブ拡張を行なう場合は、台数に応じた電流容量を考慮してください。

電源コネクタの適合DCプラグは内径 ϕ 2. 1、外形 ϕ 5. 5、センタープラスです。



4. RS-485

Modbus通信ラインの、同じ信号同士を並列に接続してください。 ノードアドレスと、接続の順序は問いません。 電源は他から供給を受けることが出来ます。 端子台部分は取り外すことが出来ます。

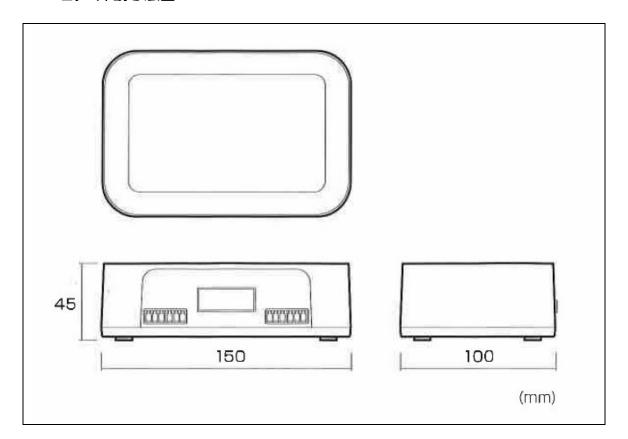
	RS-485	1 2 3 4
番号	信号	1 1 1 1
1	GND	
2	通信 A	Extension
3	通信 B	61886
4	電源	Industrial and the second

(接続例)

	端子台(4P)	
型番	691361300004	A CONTRACTOR OF THE PARTY OF TH
メーカ	Wurth Electronics	

仕様·外観

1. 仕様表


項目	内容	備考
製品名	Modbus変換器	
	(アナログシリアルコンバータと統	
	合)	
機種名	DT-MDB05s	
(入力)		
チャンネル	4チャンネル	
切り換え	チャンネルごとに電圧、電流を選	
	択。	
電源供給	最大3台まで	
(電圧)		
入力範囲	$-10V\sim10V$	
入力インピーダンス	$2M\Omega$	
分解能	10 μ V	(通常モード)
精度(確度)	読み取り値の±0.5%±50mV	$(23^{\circ}C \pm 5^{\circ}C)$
(電流)		
入力範囲	0~25mA	
入力インピーダンス	154Ω	
分解能	12nA	(通常モード)
精度(確度)	読み取り値の±0.5%±2.4 μ A	(23°C±5°C)
(共通)		
帯域	DC∼0. 5Hz	(通常モード)
	(サンプリング定理による)	
	DC~8Hz	(高速モード)
商用電源周波数抑制	80dB以上	(通常モード)
(周期)		
サンプリング周期	1秒	(通常モード)
	25ミリ秒	(高速モード)
自動リセット周期	1秒~20日。分解能1秒。	(通常モード)
	25ミリ秒~12時間。分解能25ミリ	(高速モード)
	秒。	
(絶縁)		
内部回路絶縁	250V以上	
チャンネル間絶縁	250V以上	
(Modbus)		
取得值	瞬時値/平均値/最大/最小	
	絶対値最大/絶対値最小	

項目	内容	備考
対応コマンド	保持レジスタ読み出し(03)	
	入力レジスタ読み出し(04)	
	コイル出力(単発)(05)	
	保持レジスタ書き込み(複数)(16)	
ノードアドレス	0~247。 0 はすべてに応答。	
エンディアン	4モードに対応。	
(D-Sub9ピン<対PC>)		
通信	Modbus (RS-232C)	
ビットレート	300, 1200, 2400, 4800, 9600,	[bps]
	19200, 38400, 57600, 115200,	
	230400	
(4P端子)		
通信	Modbus (RS-485)	
ビットレート	300, 1200, 2400, 4800, 9600,	[bps]
	19200, 38400, 57600, 115200,	
	230400	
(電源)		
電源	DC 8V~12V	
消費電流	最大200mA(標準100mA)	
(その他)		
使用温度範囲	0℃~60℃(結露なきこと)	
外形寸法	150mm×45mm×100mm	(吐出部は除く)
重さ	約240g(付属品除<)	

2. 外観寸法図

VI 注意事項・その他

1. 保証規定

保証期間は、納入後1年間とします。

本製品を、正しいご使用状態のもとで万一装置が故障した場合、本保証規定に従って無償 修理いたします。

ただし、つぎのような場合は、保証期間内でも、有償修理となります。

- (1)ご使用上の誤りによるもの。(2)誤接続によるもの。
- (3) 間違った電源供給によるもの。
- (4)お客様自身による改造や、修理が施されているもの。
- (5)火災、地震、風水害、落雷およびその他の天災地変、公害、塩害、ガス害(硫化ガス 等)などによるもの。
 - (6)消耗によるもの。(7)落下等によるもの。(8)外力により損傷したもの。
 - (9)海外でのご使用によるもの。

2. センドバック修理

修理はすべて、直送で対応いたします。故障した製品を弊社へ直送いただき、修理後お客 様のもとへ、直送で返却いたします。

送料は、弊社への送付時にはお客様のご負担で、弊社からお客様への返却時には、弊社 負担とさせていただきます。

3. 修理見積

修理費用は、弊社の判断で、見積りを出させていただく場合があります。

4. 免責事項

弊社では信頼性の向上に努めておりますが、本製品の使用に基づく損害等について、 全ての責任を負えるものではありません。

本製品は、高信頼性用途へのご使用は、意図されておりません。

本製品は日本国内向け仕様であり、海外でのご使用については、一切責任を負えませ λ_{\circ}